You are currently browsing the category archive for the ‘Information Management (IM)’ category.

Our recently released research into next-generation customer analytics shows that the most participants (52%) use spreadsheets as a customer analytics tool. I recently wrote that while these popular tools are adequate for some tasks, they are not suitable for analyzing large volumes and many types of customer data. So I think it is appropriate that one in four (26%) participants have adopted a dedicated customer analytics tool and a further 29 percent are planning to invest in such a tool in the next 24 months.

There are good reasons to use a capable tool for this critical areavr_Customer_Analytics_08_time_spent_in_customer_analytics of analytics. The research shows that the biggest issue for companies in producing customer analysis is data; users spend most of their time preparing (47%) or reviewing (43%) the data before they can perform any analysis. If companies don’t take action to correct this, the situation is only going to get worse. In my various research I have identified 23 sources of customer data; they include transactional data in business applications such as CRM, ERP and knowledge management, call recordings, text-based interaction data such as letters, forms, text messages, chat and Web scripts, event data such as agent desktop clicks as they try to resolve interactions, and social media posts. So not only do users have very large volumes of data to deal with, but the data comes in many different formats, several of which are unstructured. To produce as complete an analysis as possible, companies need systems that can handle almost all of these sources of data, that can automate the process of extracting the data from them, and that can standardize the data to ensure it is of the highest quality and all data relating to a single customer can be integrated. I believe that making the right product choice for customer analytics depends first on what and how much data it can process.

That said, the research reveals some other factors that impact the choice of customer analytics including real-time (21%), advanced vr_Customer_Analytics_06_most_important_customer_analytics(19%), statistics (14%), predictive (12%) and visual (10%) as first ranked priorities. Many customer-related tasks require information that is as up-to-date as possible; for example, a contact center agent needs to know what a customer attempted to do before calling the contact center so the response can be put in the context of previous interactions as well as the customer’s profile. Product evaluations thus should look for systems that not only process all forms of data but that can collect the data in real time or near real time and produce the analysis likewise. Another factor is that in dealing with customers, it is increasingly important to have predictive capabilities. To keep up organizations must move from relying on historical analysis to predicting likely future action; for example, an unusually high volume of complaints might lead to customer defections, and real-time capabilities could, for example, indicate when a negative post on social media is likely because of what the customer is saying during a phone call. I suspect that the majority of users who rely on spreadsheets do not have high expectations about the way the results are presented. But I believe that as engaging with customers becomes more complex, users will need information presented in more visual ways that help them quickly see areas that need addressing or present the data in more useful forms, such as showing the customer’s location on a map to help find the nearest service engineer to deal with an emergency.

Ventana Research tracks six technologies that are changing the vr_Customer_Analytics_07_new_technologies_for_customer_analyticsways users access and consume technology that our research finds important beyond analytics itself: big data (60%), cloud computing (44%), collaboration 62%), mobility (38%) and social media (35%). My research into next-generation customer engagement shows that companies expect analytics to have the greatest impact on the way they engage with customers in the future; more recognize that without a complete view of customers it is hard to develop a focused customer service strategy, enhance customer-related process, provide personalized responses to interactions or understand how their company is performing from the customer’s perspective. Each of the other five next-generation technologies is also having a direct impact on customer analytics. By whatever definition you use, customer data is “big” – it comes in large volumes and in multiple forms, has to be processed in real time and requires predictive capabilities. Increasingly more of it resides in the cloud and must be integrated with on-premises data, and many companies are looking to cloud-based services for customer analytics. Because many business units engage with customers they should share a single set of customer reports and analysis so that all actions and decisions are based on the same information. To do this, more companies are looking at collaborative capabilities that allow users to share customer information and work together on actions such as resolving customer issues. In addition many employees need access to customer data while away from their desks; nearly two-fifths (38%) of participants in the customer analytics research said that mobile access to their customer analytics systems is important. And finally, there is no doubt many consumers use social media, and more are doing so all the time; many of these users are also employees, and they want their work systems to be socially enabled. Add to this that companies need to understand what their customers are “saying” about them on social media, so at the very least a customer analytics system should be able to processes social media data feeds.

One of the latest buzz phrases is the Internet of things, which will serve the connected customer on more devices than ever. People now engage with companies increasingly electronically, often using smart mobile devices – they are more connected and can do things much faster than ever before, including look elsewhere if they are not satisfied with a company. Knowing your customers therefore has never been so important. Ventana Research recommends that you evaluate the options now available in customer analytics tools to help improve customer service and the outcomes of customer engagement.

Regards,

Richard J. Snow

VP & Research Director

I recently completed two closely related benchmark research reports, on next-generation customer engagement and next-generation customer analytics. The  research on customer engagement vr_Customer_Analytics_09_technology_used_for_customer_analyticsshows that companies on average engage with customers through seven or eight communication channels and that almost every business unit except IT engages with customers. To provide customers with personalized, in-context and consistent experiences across these channels, companies need an up-to-date, complete view of their customers that gives those who interact with them the information they need to decide how to respond. However, the customer analytics research shows that the majority of companies don’t have access to such information and analysis. The most common analytics tool for more than half of companies is spreadsheets in 52 percent of organizations. Although spreadsheets meet individual users’ needs for ad-hoc analysis, they are inadequate for enterprise processes such as customer analytics. Almost three-fifths (57%) of companies in the research said that using spreadsheets makes it difficult to produce accurate and timely customer analysis.

We have identified key steps in any analytics process: setup and maintenance of the data to be analyzed, preparation of the data, analysis of the data, interpretation of the results and action. As my colleague Robert Kugel has often noted, most spreadsheet users are self-taught, and setting up and maintaining spreadsheets can be time-consuming tasks. Those with limited skills may stick to the basics and so miss out on more complex analysis. Indeed, my benchmark research finds that only 15 percent of companies said their employees have excellent analytics skills, and more than one-third (35%) of business users said they don’t get enough support from IT in using customer analytics.

In addition, companies are now generating enormous volumes of customer data, much of it unstructured, including call recordings, text messages, chat and Web scripts, CRM notes and social media posts. For spreadsheet users, extracting insights from so much various data requires considerable amounts of manual effort. For example, someone must listen to calls to extract customer sentiment from call recordings and then input the content. In addition, given the sheer volume of these types of data, many companies cannot process it all and therefore can’t produce a complete view.

Because of the lack of skills and the limited visualization capabilities of spreadsheets, most users settle for simple 2-D charts such as graphs, pie charts and line diagrams. Our research shows that almost three-quarters (72%) of companies are content to limit outputs to such charts and therefore potentially miss out on insights that could be uncovered through advanced forms of visualization. As many people before me have said, there is little benefit to producing information and analysis if you don’t use it to take action. Spreadsheets are limited also in capabilities to share outputs, and so most companies put that data into PowerPoint slides and share the results through email. Under such circumstances, it is likely that not everyone is using the same customer analysis, which in turn raises the likelihood of employees making decisions based on inconsistent information.

vr_Customer_Analytics_03_key_benefits_of_customer_analyticsHowever, if spreadsheets are not the answer, what is? Our benchmark research shows that one in four (26%) companies have adopted a dedicated customer analytics tool and that those businesses have achieved on average nearly six benefits. The chief benefit is improvements in the customer experience, which 55 percent have realized. This is closely followed by seven other benefits, achieved by an almost equal number of companies: better analysis across a range of business needs (52%), better alignment across business units (51%), better sharing and communication across business units (49%), improved productivity (49%), improved efficiency of business processes (47%), faster responses to opportunities (47%) and enhanced competitive advantage (47%). All of these benefits are compelling reasons to change, but our research doesn’t show this happening: Only about one in three (29%) participants said they intend to change in the next 12 months.

This of course begs the question, Why not? The benchmark research finds the answer in a lack of focus on producing a compelling business case for change. It seems companies’ primary concern is the presentation of the business case, not the potential value of investing in customer analytics, finding the budget for such an investment and gaining executive sponsorship. Given that companies see spreadsheets as “free,” producing a case for spending money is not a priority for most. However, customers are the lifeblood of all businesses, so having a complete view of them is essential to marketing, sales, customer service and financial success. As such, I urge companies to look at the benefits others have gained using dedicated customer analytics tools and use them to build a case for change.

Regards,

Richard J. Snow

VP & Research Director

RSS Richard Snow’s Analyst Perspectives at Ventana Research

  • An error has occurred; the feed is probably down. Try again later.

Twitter Updates

Error: Twitter did not respond. Please wait a few minutes and refresh this page.

Stats

  • 68,570 hits
%d bloggers like this: